Jumat, 06 Februari 2015

ZPT



BAB I
PENDAHULUAN
Konsep zat pengatur tumbuh diawali dengan konsep hormon tanaman. Hormon tanaman adalah senyawa-senyawa organik tanaman yang dalam konsentrasi yang rendah mempengaruhi proses -proses fisiologis. Proses-proses fisiologis ini terutama tentang proses pertumbuhan, differensiasi dan perkembangan tanaman. Proses-proses lain seperti pengenalan tanaman, pembukaan stomata, translokasi dan serapan haradipengaruhi oleh hormone tanaman. Hormon tanaman kadang-kadang juga disebut fitohormon, tetapi istilah ini lebih jarang digunakan. Istilah hormon ini berasal dari bahasa Gerika yang berarti pembawa pesan kimiawi (Chemical messenger) yang mula-mula dipergunakan pada fisiologi hewan. Dengan berkembangnya pengetahuan biokimia dan dengan majunya industry kimia maka ditemukan banyak senyawa senyawa yang mempunyai pengaruh fisiologis yang serupa dengan hormon tanaman. Senyawa-senyawa sintetik ini pada umumnya dikenal dengan nama zat pengatur tumbuh tanaman (ZPT = Plant Growth Regulator).
Tentang senyawa hormon tanaman dan zat pengatur tumbuh, Moore mencirikannya sebagai berikut :
1.        Fitohormon atau hormon tanaman adalah senyawa organik bukan nutrisi yang aktif dalam jumlah kecil (< 1mM) yang disintesis pada bagian tertentu, pada umumnya ditranslokasikan kebagian lain tanaman dimana senyawa tersebut, menghasilkan suatu tanggapan secara biokimia, fisiologis dan morfologis.
2.        Zat Pengatur Tumbuh adalah senyawa organik bukan nutrisi yang dalam konsentrasi rendah (< 1 mM) mendorong, menghambat atau secara kualitatif mengubah pertumbuhan dan perkembangan tanaman.
3.        Inhibitor adalah senyawa organik yang menghambat pertumbuhan secara umum dan tidak ada selang konsentrasi yang dapat mendorong pertumbuhan.
Pertumbuhan, perkembangan, dan pergerakan tumbuhan dikendalikan beberapa golongan zat yang secara umum dikenal sebagai hormon tumbuhan atau fitohormon. Penggunaan istilah "hormon" sendiri menggunakan analogi fungsihormon pada hewan; dan, sebagaimana pada hewan, hormon juga dihasilkan dalam jumlah yang sangat sedikit di dalam sel. Beberapa ahli berkeberatan dengan istilah ini karena fungsi beberapa hormon tertentu tumbuhan (hormon endogen, dihasilkan sendiri oleh individu yang bersangkutan) dapat diganti dengan pemberian zat-zat tertentu dari luar, misalnya dengan penyemprotan (hormon eksogen, diberikan dariluar sistem individu). Mereka lebih suka menggunakan istilah zat pengatur tumbuh(bahasa Inggris plant growth regulator).
Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya.


BAB II
PERMASALAHAN
Ahli biologi tumbuhan telah mengidentifikasi 5 tipe utama ZPT yaitu auksin, sitokinin, giberelin,  asam absisat dan etilen (Tabel 1). Tiap kelompok ZPT dapat menghasilkan beberapa pengaruh yaitu kelima kelompok ZPT mempengaruhi pertumbuhan, namun hanya 4 dari 5 kelompok ZPT tersebut yang mempengaruhi perkembangan tumbuhan yaitu dalam hal diferensiasi sel.
Seperti halnya hewan, tumbuhan memproduksi ZPT dalam jumlah yang sangat sedikit, akan tetapi jumlah yang sedikit ini mampu mempengaruhi sel target. ZPT menstimulasi pertumbuhan dengan memberi isyarat kepada sel target untuk membelah atau memanjang, beberapa ZPT menghambat pertumbuhan dengan cara menghambat pembelahan atau pemanjangan sel. Sebagian besar molekul ZPT dapat mempengaruhi metabolisme dan perkembangan sel-sel tumbuhan. ZPT melakukan ini dengan cara mempengaruhi lintasan sinyal
tranduksi pada sel target. Pada tumbuhan seperti halnya pada hewan, lintasan ini menyebabkan respon selular seperti mengekspresikan suatugen, menghambat atau mengaktivasi enzim, atau mengubah membran.
Pengaruh dari suatu ZPT bergantung pada spesies tumbuhan, situs aksi ZPT pada tumbuhan, tahap perkembangan tumbuhan dan konsentrasi ZPT. Satu ZPT tidak bekerja sendiri dalam mempengaruhi pertumbuhan dan perkembangan tumbuhan, padau mumnya keseimbangan konsentrasi dari beberapa ZPT-lah yang akan mengontrol pertumbuhan dan perkembangan tumbuhan.


Tabel 1. Peranan ZPT pada pertumbuhan dan perkembangan tumbuhan
ZPT
Fungsi Utama
Tempat Dihasilkan dan lokasinya pada tumbuhan
Auksin
Mempengaruhi pertambahan panjang batang, pertumbuhan, diferensiasi dan percabangan akar; perkembangan buah; dominansi apikal; fototropisme dan geotropisme.
Meristem apikal tunas ujung, daun muda, embrio dalam biji.
Sitokinin
Mempengaruhi pertumbuhan dan diferensiasi akar; mendorong pembelahan sel dan pertumbuhan secara umum, mendorong perkecambahan dan menunda penuaan
Pada akar, embrio dan buah, berpindah dari akar ke organ lain.
Giberelin
Mendorong perkembangan biji, Perkembangan kuncup, pemanjangan batang dan pertumbuhan daun; mendorong pembungaan dan perkembangan buah; mempengaruhi pertumbuhan dan diferensiasi akar.
Meristem apikal tunas ujung dan akar; daun muda; embrio.
Asam
absisat
(ABA)
Menghambat pertumbuhan; Merangsang penutupan stomata pada waktu kekurangan air, memper-tahankan dormansi.
Daun; batang, akar, buah berwarna hijau.
Etilen
Mendorong pematangan; memberikan pengaruh yang berlawanan dengan beberapa pengaruh auksin; mendorong atau menghambat pertumbuhan dan? Perkembangan akar, daun, batang dan bunga.
Buah yang matang, buku pada batang, daun yang sudah menua.

Pada umumnya, hormon mengontrol pertumbuhan dan perkembangan tumbuhan, dengan mempengaruhi : pembelahan sel, perpanjangan sel, dan differensiasi sel. Beberapa hormon juga menengahi respon fisiologis berjangka pendek dari tumbuhan terhadap stimulus lingkungan. Setiap hormon, mempunyai efek ganda tergantung pada : tempat kegiatannya, konsentrasinya, dan stadia perkembangan tumbuhannya.
Hormon tumbuhan, diproduksi dalam konsentrasi yang sangat rendah; tetapi sejumlah kecil hormon dapat membuat efek yang sangat besar terhadap pertumbuhan dan perkembangan organ suatu tumbuhan. Hal ini secara tidak langsung menyatakan bahwa, sinyal hormonal hendaknya diperjelas melalui beberapa cara.
Suatu hormon, dapat berperan dengan mengubah ekspresi gen, dengan mempengaruhi aktivitas enzim yang ada, atau dengan mengubah sifat membran. Beberapa peranan ini, dapat mengalihkan metabolisme dan pekembangan sel yang tanggap terhadap sejumlah kecil molekul hormon. Lintasan transduksi sinyal, memperjelas sinyal hormonal dan meneruskannya ke
respon sel spesifik.
Respon terhadap hormon, biasanya tidak begitu tergantung pada jumlah absolute hormon tersebut, akan tetapi tergantung pada konsentrasi relatifnya dibandingkan dengan hormon lainnya. Keimbangan hormon, dapat mengontrol pertumbuhan dan perkembangan tumbuhan daripada peran hormon secaramandiri. Interaksi ini akan menjadi muncul dalam penyelidikan
tentang fungsi hormon.


BAB III
PEMBAHASAN
2.1. Auksin
Istilah auksin diberikan pada sekelompok senyawa kimia yang memiliki fungsi utama mendorong pemanjangan kuncup yang sedang berkembang. Beberapa auksin dihasilkan secara alami oleh tumbuhan, misalnya IAA (indoleacetic acid), PAA(Phenylacetic acid), 4-chloroIAA (4-chloroindole acetic acid) dan IBA (indolebutyricacid) dan beberapa lainnya merupakan auksin
sintetik, misalnya NAA (napthaleneacetic acid), 2,4 D (2,4 dichlorophenoxyacetic acid) dan MCPA (2-methyl-4chlorophenoxyacetic acid).
Istilah auksin juga digunakan untuk zat kimia yang meningkatkan perpanjangan koleoptil; walaupun demikian, auksin pada kenyataannya mempunyai fungsi ganda padaMonocotyledoneae maupun pada Dicotyledoneae. Auksin alami yang berada di dalam tumbuhan, adalah asam indol asetat (IAA=Indol Asetic Acid), akan tetapi, beberapa senyawa lainnya, termasuk beberapa sintetisnya, mempunyai aktivitas seperti auksin. Nama auksin digunakan khususnya terhadap IAA. Walaupun auksin merupakan hormon tumbuhan pertama yang ditemukan, namun masih banyak yang harus dipelajari tentang transduksi sinyal auksin dan tentang regulasi biosintesis auksin. Kenyataan sekarang mengemukakan bahwa auksin diproduksi dari asam amino triptopan di dalam ujung tajuk tumbuhan.
Pengaruh IAA terhadap pertumbuhan batang dan akar tanaman kacang kapri. Kecambah yang diberi perlakuan IAA menunjukkan pertambahan tinggi yang lebih besar (kanan) dari tanaman kontrol (kurva hitam). Tempat sintesis utama auksin pada tanaman yaitu di daerah meristem apikal tunas ujung. IAA yang diproduksi di tunas ujung tersebut diangkut ke bagian bawah dan berfungsi mendorong pemanjangan sel batang. IAA mendorong pemanjangan sel batang hanya pada konsentrasi tertentu yaitu0,9 g/l. Di atas konsentrasi tersebut IAA akan menghambat pemanjangan sel batang. Pengaruh menghambat ini kemungkinan terjadi karena konsentrasi IAA yang tinggimengakibatkan tanaman mensintesis ZPT lain yaitu etilen yang memberikan pengaruh berlawanan dengan IAA. Berbeda dengan pertumbuhan batang, pada akar, konsentrasiIAA yang rendah (<10-5 g/l) memacu pemanjangan sel-sel akar, sedangkan konsentrasi IAA yang tinggi menghambat pemanjangan sel akar. Sehingga dapat disimpulkan :
1.        Pemberian ZPT yang sama tetapi dengan konsentrasi yang berbeda menimbulkan pengaruh yang berbeda pada satu sel target.
2.        Pemberian ZPT dengan konsentrasi tertentu dapat memberikan pengaruh yang berbeda pada sel-sel target yang berbeda.

Peranan Auksin
a.        Auksin Di Dalam Perpanjangan Sel
Meristem tunas apikal adalah tempat utama sintesis auksin. Pada saat auksin bergerak dari ujung tunas ke bawah ke daerah perpanjangan sel, maka hormon auksin mengstimulasi pertumbuhan sel, mungkin dengan mengikat reseptor yang dibangun di dalam membran plasma.
Auksin akan menstimulasi pertumbuhan hanya pada kisaran konsentrasi tertentu; yaitu antara : 10-8 M sampai 10-4 M. Pada konsentrasi yang lebih tinggi; auksin akan menghambat perpanjangan sel, mungkin dengan menginduksi produksi etilen, yaitu suatu hormon yang pada umumnya berperan sebagai inhibitor pada perpanjangan sel.
Berdasarkan suatu hipotesis yang disebut hipotesis pertumbuhan asam (acid growth hypothesis), pemompaan proton membran plasma memegang peranan utama dalam respon pertumbuhan sel terhadap auksin. Di daerah perpanjangan tunas, auksin menstimulasi pemompaan proton membrane plasma, dan dalam beberapa menit; auksin akan meningkatkan potensial membran (tekanan melewati membran) dan menurunkan pH di dalam dinding sel.
Pengasaman dinding sel ini, akan mengaktifkan enzim yang disebut ekspansin; yang memecahkan ikatan hidrogen antara mikrofibril sellulose, dan melonggarkan struktur dinding sel. Ekspansin dapat melemahkan integritas kertas saring yang dibuat dari sellulose murni.
Penambahan potensial membran, akan meningkatkan pengambilan ion ke dalam sel, yang menyebabkan pengambilan air secara osmosis. Pengambilan air, bersama dengan penambahan plastisitas dinding sel, memungkinkan sel untuk memanjang. Auksin juga mengubah ekspresi gen secara cepat, yang menyebabkan sel dalam daerah perpanjangan, memproduksi protein baru, dalam jangka waktu beberapa menit. Beberapa protein, merupakan faktor transkripsi yang secara
menekan ataupun mengaktifkan ekspresi gen lainnya.
Untuk pertumbuhan selanjutnya, setelah dorongan awal ini, sel akan membuat lagi sitoplasma dan bahan dinding sel. Auksin juga menstimulasi respon pertumbuhan selanjutnya.

b.        Auksin dalam Pembentukan Akar Lateral dan Akar Adventif
Auksin digunakan secara komersial di dalam perbanyakan vegetative tumbuhan melalui stek. Suatu potongan daun, maupun potongan batang, yang diberi serbuk pengakaran yang mengandung auksin, seringkali menyebabkan terbentuknya akar adventif dekat permukaan potongan tadi. Auksin juga terlibat di dalam pembentukan percabangan akar. Beberapa peneliti menemukan bahwa dalam mutan Arabidopsis, yang memperlihatkan perbanyakan akar lateral yang ekstrim ternyata mengandung auksin dengan konsentrasi 17 kali lipat dari konsentrasi yang normal.

c.         Auksin Sebagai Herbisida
Auksin sintetis, seperti halnya 2,4-dinitrofenol (2,4-D), digunakan secara meluas sebagai herbisida tumbuhan. Pada Monocotyledoneae, misalnya : jagung dan rumput lainnya dapat dengan cepat men ginaktifkan auksin sintetik ini, tetapi pada Dicotyledoneae tidak terjadi, bahkan tanamannya mati karena terlalu banyak dosis hormonalnya. Menyemprot beberapa tumbuhan serialia ataupun padang rumput dengan 2,4-D, akan mengeliminir gulma berdaun lebar seperti dandelion.
d.        Efek LainnyaaDari Aukssin
Selain untuk menstimulasi perpanjangan sel dalam pertumbuhan primer; auksin juga mempengaruhi pertumbuhan sekunder, termasuk pembelahan sel di dalam kambium pembuluh, dan dengan mempengaruhi differensiasi xylem sekunder.
Biji yang sedang berkembang mensintesis auksin, untuk dapat meningkatkan pertumbuhan buah di dalam tumbuhan. Auksin sintetik yang disemprotkan ke dalam tanaman tomat anggur akan menginduksi perkembangan buah tanpa memerlukan pollinasi. Hal ini memungkinkan untuk menghaslkan tomat tanpa biji, melalui substitusi auksin sintetik, pada auksin yang disintetis secara normal, pada biji yang sedang berkembang.

2.2.  Sitokinin
Sitokinin merupakan ZPT yang mendorong pembelahan (sitokinesis). Beberapa macam sitokinin merupakan sitokinin alami (misal : kinetin, zeatin) dan beberapa lainnya merupakan sitokinin sintetik. Sitokinin alami dihasilkan pada jaringan yang tumbuh aktif terutama pada akar, embrio dan buah. Sitokinin yang diproduksi di akar selanjutnya diangkut oleh xilem menuju sel-sel target pada batang. Ahli biologi tumbuhan juga menemukan bahwa sitokinin dapat meningkatkan pembelahan, pertumbuhan dan perkembangan kultur sel tanaman. Sitokinin juga menunda penuaan daun, bunga dan buah dengan cara mengontrol dengan baik proses kemunduran yang menyebabkan kematian sel-sel tanaman. Penuaan pada daun melibatkan penguraian klorofil dan protein-protein, kemudian produk tersebut diangkut oleh floem ke jaringan meristem atau bagian lain dari tanaman yang membutuhkannya.
Daun kacang jogo (Phaseolus vulgaris) yang ditaruh dalam wadah berair dapat ditunda penuaannya beberapa hari apabi la disemprot dengan sitokinin. Sitokinin juga dapat menghambat penuaan bunga dan buah. Penyemprotan sitokinin pada bunga potong dilakukan agar bunga tersebut tetap segar.
Sebagian besar tumbuhan memiliki pola pertumbuhan yang kompleks yaitu tunaslateralnya tumbuh bersamaan dengan tunas terminalnya. Pola pertumbuhan inimerupakan hasil interaksi antara auksin dan sitokinin dengan perbandingan tertentu.
Sitokinin diproduksi dari akar dandiangkut ke tajuk, sedangkan auksin dihasilkan dikuncup terminal kemudian diangkut ke bagian bawah tumbuhan. Auksin cenderung menghambat aktivitas meristem lateral yang letaknya berdekatan dengan meristem apikal sehingga membatasi pembentukan tunas-tunas cabang dan fenomena ini disebut dominasi apikal. Kuncup aksilar yang terdapat di bagian bawah tajuk (daerah yang berdekatan dengan akar) biasanya akan tumbuh memanjang dibandingkan dengan tunas aksilar yang terdapat dekat dengan kuncup terminal. Hal ini menunjukkan ratiositokinin terhadap auksin yang lebih tinggi pada bagian bawah tumbuhan. Interaksi antagonis antara auksin dan sitokinin juga merupakan salah satu cara tumbuhan dalam mengatur derajat pertumbuhan akar dan tunas, misalnya jumlah
akar yang banyak akan menghasilkan sitokinin dalam jumlah banyak. Peningkatan konsentrasi sitokinin ini akan menyebabkan sistem tunas membentuk cabang dalam jumlah yang lebih banyak. Interaksi antagonis ini umumnya juga terjadi di antara ZPT tumbuhan lainnya.

Peranan Sitokinin
a.         Pengaturan pembelahan sel dan diferensiasi sel
Sitokinin, diproduksi dalam jaringan yang sedang tumbuh aktif, khususnya pada akar, embrio, dan buah. Sitokinin yang diproduksi di dalam akar, akan sampai ke jaringan yang dituju, dengan bergerak ke bagian atas tumbuhan di dalam cairan xylem. Bekerja bersama-sama dengan auksin; sitokinin menstimulas pembelahan sel dan mempengaruhi lintasan diferensiasi. Efek sitokinin terhadap pertumbuhan sel di dalam kultur jaringan, memberikan petunjuk tentang bagaimana jenis hormon ini berfungsi di dalam tumbuhan yang lengkap.
Ketika satu potongan jaringan parenkhim batang dikulturkan tanpa memakai sitokinin, maka selnya itu tumbuh menjadi besar tetapi tidak membelah. Sitokinin secara mandiri tidak mempunyai efek.Akan tetapi, apabila sitokinin itu ditambahkan bersama-sama dengan auksin, maka sel itu dapat membelah.

b.        Pengaturan Dominansi Apikal
Sitokinin, auksin, dan faktor lainnya berinteraksi dalam mengontrol dominasi apikal, yaitu suatu kemampuan dari tunas terminal untuk menekan perkembangan tunas aksilar. Sampai sekarang, hipotesis yang menerangkan regulasi hormonal pada dominansi apikal, yaitu hipotesis penghambatan secara langsung, menyatakan bahwa auksin dan sitokinin bekerja secara antagonistis dalam mengatur pertumbuhan tunas aksilari.
Berdasarkan atas pandangan ini, auksin yang ditransportasikan ke bawah tajuk dari tunas terminal, secara langsung menghambat pertumbuhan tunas aksilari. Hal ini menyebabkan tajuk tersebut menjadi memanjang dengan mengorbankan percabangan lateral.
Sitokinin yang masuk dari akar ke dalam sistem tajuk tumbuhan, akan melawan kerja auksin, dengan mengisyaratkan tunas aksilar untuk mulai tumbuh. Jadi rasio auksin dan sitokinin merupakan faktor kritis dalam mengontrol penghambatan tunas aksilar.
Banyak penelitian yang konsisten dengan hipotesis penghambatan langsung ini. Apabila tunas terminal yang merupakan sumberauksinutamadihilangkan, maka penghambatan tunas aksilar juga akan hilang dan tanaman menjadi menyemak.
Aplikasi auksin pada permukaan potongan kecambah yang terpenggal, akan menekan kembali pertumbuhan tunas lateral. Mutan yang terlalu banyak memproduksi sitokinin, atau tumbuhan yang diberi sitokinin, juga bertendensi untuk lebih menyemak dibanding yang normal.
c.         Efek Anti Penuaan
Sitokinin, dapat menahan penuaan beberapa organ tumbuhan, dengan menghambat pemecahan protein, dengan menstimulasi RNA dan sintesis protein, dan dengan memobilisasi nutrien dari jaringan di sekitarnya.
Apabila daun yang dibuang dari suatu tumbuhan dicelupkan ke dalam larutan sitokinin, maka daun itu akan tetap hijau lebih lama daripada biasanya. Sitokinin jugamemperlambat deteorisasi daun pada tumbuhan utuh. Karena efek anti penuaan ini, para floris melakukan penyemprotan sitokinin untuk menjaga supaya bunga potong tetap segar.


2.3.  Giberelin
Pada tahun 1926, ilmuwan Jepang (Eiichi Kurosawa) menemukan bahwa cendawan Gibberella fujikuroi mengeluarkan senyawa kimia yang menjadi penyebab penyakit tersebut. Senyawa kimia tersebut dinamakan Giberelin. Belakangan ini, para peneliti menemukan bahwa giberelin dihasilkan secara alami oleh tanaman yang memiliki fungsi sebagai ZPT. Penyakit rebah kecambah ini akan muncul pada saat tanaman padi terinfeksi oleh cendawan Gibberella fujikuroi yang menghasilkan senyawa giberelin dalam jumlah berlebihan.
Pada saat ini dilaporkan terdapat lebih dari 110 macam senyawa giberelin yang biasanya disingkat sebagai GA. Setiap GA dikenali dengan angka yang terdapat padanya, misalnya GA6 . Giberelin dapat diperoleh dari biji yang belum dewasa (terutama pada tumbuhan dikotil), ujung akar dan tunas, daun muda dan cendawan. Sebagian besar GA yang diproduksi oleh tumbuhan
adalah dalam bentuk inaktif, tampaknya memerlukan prekursor untuk menjadi bentuk aktif. Pada spesies tumbuhan dijumpai kurang lebih 15 macam GA. Disamping terdapat pada tumbuhan ditemukan juga pada alga, lumut dan paku, tetapi tidak pernah dijumpai pada bakteri. GA ditransportasikan melalui xilem dan floem, tidak seperti auksin pergerakannya bersifat tidak polar.
Salah satu zat kimia yang diperlukan dalam proses pemuliaan tanaman adalah GA3, sejak tahun 1950 orang sudah menaruh harapan besar terhadap GA terutama untuk meningkatkan produksi tanaman budidaya. GA sintesis yang biasanya tersedia secara komersial adalah GA3, GA7, GA13. Giberelin terdapat dalam berbagai organ: akar, batang, tunas, daun, tunas- tunas bunga, bintil akar, buah, dan jaringan kalus.
Asetil koA, yang berperan penting pada proses respirasi berfungsi sebagai prekursor pada sintesis GA. Kemampuannya untuk meningkatkan pertumbuhan pada tanaman lebih kuat dibandingkan dengan pengaruh yang ditimbulkan oleh auksin apabila diberikan secara tunggal. Namun demikian auksin dalam jumlah yang sangat sedikit tetap dibutuhkan agar GA dapat memberikan efek yang maksimal. Sebagian besar tumbuhan dikotil dan sebagian kecil tumbuhan monokotil akan tumbuh cepat jika diberi GA, tetapi tidak demikian halnya pada tumbuhan konifer misalnya pinus. Jika GA diberikan pada tanaman kubis tinggi tanamannya bisa mencapai 2 m.Banyak tanaman yang secara genetik kerdil akan tumbuh normal setelah diberi GA. Efek giberelin tidak hanya mendorong perpanjangan batang, tetapi juga terlibat dalam proses regulasi perkembangan tumbuhan seperti halnya auksin. Pada beberapa tanaman pemberian GA bisa memacu pembungaan dan mematahkan dormansi tunas-tunas serta biji.

Peranan Giberellin
a.        Perpanjangan Batang
Akar dan daun muda, adalah tempat utama yang memproduksi gibberellin. Gibberellin menstimulasi pertumbuhan pada daun maupun pada batang; tetapi efeknya dalam pertumbuhan akar sedikit . Di dalam batang, gibberellin menstimulasi perpanjangan sel dan pembelahan sel.
Seperti halnya auksin, gibberellin menyebabkan pula pengendoran dinding sel, tetapi tidak mengasamkan dinding sel. Satu hipotesis menyatakan bahwa; gibberellin menstimulasi enzim yang mengendorkan dinding sel, yang memfasilitasi penetrasi protein ekspansin ke dalam dinding sel. Di dalam batang yang sedang tumbuh, auksin, mengasamkan dinding sel dan mengaktifkan ekspansin; sedangkan gibberellin memfasilitasi penetrasi ekspansin ke dalam dinding sel untuk bekerja sama dalam meningkatkan perpanjangan sel.
Efek gibberellin dalam meningkatkan perpanjangan batang, adalah jelas, ketika mutan tumbuhan tertentu yang kerdil, diberi gibberellin. Beberapa kapri yang kerdil (termasuk yang dipelajari oleh Mendel), tumbuh dengan ketinggian normal bila diberi gibberellin. Apabila gibberellins diaplikasikan ke tumbuhan yang ukurannya normal, seringkali tidak memberikan respon. Nampaknya, tumbuhan tersebut sudah memproduksi dosis hormon yang optimal.
Suatu contoh yang paling menonjol, dari perpanjangan batang yang telah diinduksi oleh gibberellin;adalah terjadinya pemanjangan yang tiba-tiba yang disebut bolting, yaitu pertumbuhan tangkai bunga yang cepat.
Fase vegetatif beberapa tumbuhan, seperti pada kubis, tumbuh dalam bentuk roset; yaitu, tumbuhnya pendek dekat dengan tanah karena ruas-ruas (internodus) yang pendek. Pada saat tumbuhan berubah ke fase reproduktif, maka terjadi ledakan gibberellin yang menginduksi internodus menjadi memanjang dengan cepat, sehingga kuncup bunga menjadi tinggi dan berkembang pada ujung batang.

b.        Pertumbuhan Buah
Pada kebanyakan tumbuhan, auksin maupun gibberellin hendaknya selalu tersedia untuk mengatur pertumbuhan buah. Aplikasi gibberellin secara komersial yaitu dengan menyemprot anggur ‘Thompson’ menjadi tanpa biji adalah sangat penting.
Hormon, menjadikan buah anggur secara individu tumbuh lebih besar, sesuai dengan ukuran yang diinginkan konsumen; dan juga menjadikan ruas (internodus) lebih panjang, sehingga lebih banyak tempat bagi tiap-tiap buah anggur untuk berkembang.
Penambahan ruang tumbuh ini, akan meningkatkan sirkulasi udara antara buah anggur yang satu dengan yang lainnya; juga menjadikan buah anggur lebih keras, sehingga tahan terhadap jamur serta mikroorganisme lainnya yang akan menginfeksi buah.

c.         Perkecambahan
Embrio biji kaya dengan sumber gibberellin. Setelah air diimbibisi, terjadi pelepasan gibberellin dari embrio, yang mengisyaratkan biji untuk memecahkan dormansi dan segera berkecambah. Pada beberapa biji yang memerlukan kondisi lingkungan khusus untuk berkecambah, misal keterbukaan terhadap cahayaatau temperatur yang dingin, maka pemberian gibberellin akan memecahkan dormansi. Gibberellin, membantu pertumbuhan pada perkecambahan serialia, dengan menstimulasi sintesis enzim pencerna seperti amilase, yang memobilisasi cadangan makanan. Diduga giberelin yang terdapat di dalam biji merupakan penghubung antara isyarat lingkungan dan proses metabolik yang menyebabkan pertumbuhan embrio. Sebagai contoh, air yang tersedia dalam jumlah cukup akan menyebabkan embrio pada biji rumput-rumputan mengeluarkan giberelin yang mendorong perkecambahan dengan memanfaatkan cadangan makanan yang terdapat di dalam biji. Pada beberapa tanaman, giberelin menunjukkan interaksi antagonis dengan ZPT lainnya misalnya dengan asam absisat yang menyebabkan dormansi biji.

2.4.  Asam absisat (ABA)
Musim dingin atau masa kering merupakan waktu dimana tanaman beradaptasi menjadi dorman (penundaan pertumbuhan). Pada saat itu, ABA yang dihasilkan oleh kuncup menghambat pembelahan sel pada jaringan meristem apikal dan pada cambium pembuluh sehingga menunda pertumbuhan primer maupun sekunder. ABA juga memberi sinyal pada kuncup untuk membentuk sisik yang akan melindungi kuncup dari kondisi lingkungan yang tidak menguntungkan. Dinamai dengan asam absisat karena diketahui bahwa ZPT ini menyebabkan absisi/rontoknya daun tumbuhan pada musimgugur. Nama tersebut telah popular walaupun para peneliti tidak pernah membuktikan kalau ABA terlibat dalam gugurnya daun.
Pada kehidupan suatutumbuhan, merupakan hal yang menguntungkanuntuk menunda/menghentikan pertumbuhan sementara. Dormansi biji sangat penting terutama bagi tumbuhan setahun di daerah gurun atau daerah semiarid, karena proses perkecambahan dengan suplai air terbatas akan mengakibatkan kematian. Sejumlah faktor lingkungan diketahui mempengaruhi dormansi biji, tetapi pada banyak tanaman ABA tampaknya bertindak sebagai penghambat utama perkecambahan. Biji-biji tanaman setahun tetap dorman di dalam tanah sampai air hujan mencuci ABA keluar dari biji.

Peranan Asam Absisat (ABA)
a.        Dormansi Biji
Dormansi biji, mempunyai nilai kelangsungan hidup yang besar; karena dia menjamin bahwa biji akan berkecambah; hanya apabila ada kondisi yang optimal dari : cahaya, temperatur, dan kelembaban. Apa yang mencegah biji yang disebarkan pada mus im gugur untuk segera berkecambah lalu mati hanya karena adanya musim dingin. Mekanisme apa yang menjamin
bahwa biji tertentu berkecambah pada musim semi?. Apayang mencegah biji berkecambah di dalam keadaan gelap, ataupun kelembaban yang tinggi di dalam biji.
Jawabannya adalah ABA. Level ABA akan bertambah 100kali lipat selama pematangan biji. Level ABA yang tinggi dalam pematangan biji ini, akan menghambat perkecambahan, dan menginduksi produksi protein khusus, yang membantu biji untuk menahan dehidrasi yang ekstrim yang mengiringi pematangan.
Banyak tipe biji yang dorman, akan berkecambah ketika ABA pada biji tersebut dihilangkan, atau dinonaktifkan, dengan beberapa cara. Biji beberapa tumbuhan gurun, akan pecah dormansinya, apabila terjadi hujan yang lebat yang akan mencuci ABA dari biji. Biji lainnya membutuhkan cahaya ataupun membutuhkan keterbukaan yang lebih lama terhadap temperatur dingin untuk memicu tidak aktifnya ABA. Sering kali rasio ABA-gibberellin menentukan; apakah biji itu akan tetap dorman atau akan berkecambah. Penambahan ABA ke dalam biji yang sedianya berk ecambah, akan kembali menjadikan dalam kondisi dorman. Mutan jagung, yang mempunyai biji yang sudah berkecambah saat masih pada tongkolnya, tidak mempunyai faktor transkripsi fungsional yang diperlukan oleh ABA untuk menginduksi ekspresi gen tertentu.

b.        Cekaman Kekeringan
ABA, adalah sinyal internal utama, yang memungkinkan tumbuhan, untuk menahan kekeringan. Apabila suatu tumbuhan memulai layu, maka ABA berakumulasi di dalam daun, dan menyebabkan stomata menutup dengan cepat, untuk mengurangi transpirasi, dan mencegah kehilangan air berikutnya.
ABA, melalui pengaruhnya terhadap mesenjer ke-2, yaitu terhadap Ca (kalsium), menyebabkan peningkatan pembukaan saluran K (kalium) sebelah luar secara langsungdi dalam membran plasma sel penutup. Hal ini mendorong kehilangan kalium dalam bentuk massif darinya, yang jika disertai dengan kehilangan air secara osmotis akan mendorong pengurangan turgor sel penutup yang mengecilkan celah stomata.
Dalam beberapa kasus, kekurangan air terlebih dahulu akan mencekam sistem perakaran sebelum mencekam sistem tajuk. ABA akan ditransportasi dari akar ke daun, yang berfungsi sebagai sistem peringatan dini (early warning system). Mutan ‘Wilty’ yang mengalami kelayuan, yang biasanya mudah untuk layu, dalam beberapa kasus disebabkan karena kekurangan produksi ABAnya.

2.5.   ETHYLENE
Buah-buahan mempunyai arti penting sebagi sumber vitamine, mineral, dan zat-zat lain dalam menunjang kecukupan gizi. Buah-buahan dapat kita makan baik pada keadaan mentah maupun setelah mencapai kematangannya. Sebagian besar buah yang dimakan adalah buah yang telah mencapai tingkat kematangannya. Untuk meningkatkan hasil buah yang masak baik secara
kualias maupun kuantitasnya dapat diusahakan dengan substansi tertentu antara lain dengan zat pengatur pertumbuhan Ethylene. Dengan mengetahui peranan ethylene dalam pematangan buah kita dapat menentukan penggunaannya dalam industri pematangan buah atau bahkan mencegah
produksi dan aktifitas ethyelen dalam usaha penyimpanan buah-buahan.
Ethylene mula-mula diketahui dalam buah yang matang oleh para pengangkut buah tropica selama pengapalan dari Yamaika ke Eropa pada tahun 1934, pada pisang masak lanjut mengeluarkan gas yang juga dapat memacu pematangan buah yang belum masak. Sejak saat itu Ethylene (C2 H2) dipergunakan sebagai sarana pematangan buah dalam industri.
Ethylene adalah suatu gas yang dapat digolongkan sebagai zat pengatur pertumbuhan (phytohormon) yang aktif dalam pematangan. Dapat disebut sebagai hormon karena telah memenuhi persyaratan sebagai hormon, yaitu dihasilkan oleh tanaman, besifat mobil dalam jaringan tanaman dan merupakan senyawa organik. Seperti hormon lainnya ethylene berpengaruh pula dalam proses pertumbuhan dan perkembangan tanaman antara lain mematahkan dormansi umbi kentang, menginduksi pelepasan daun atau leaf abscission, menginduksi pembungaan nenas.
Proses pematangan buah sering dihubungkan dengan rangkaian perubahan yang dapat dilihat meliputi warna, aroma, konsistensi dan flavor (rasa dan bau). Perpaduan sifat-sifat tersebut akan menyokong kemungkinan buah-buahan enak dimakan. Proses pematangan buah didahului dengan klimakterik (pada buah klimakterik). Klimakterik dapat didefinisikan sebagai suatu periode mendadak yang unik bagi buah dimana selama proses terjadi serangkaian perubahan biologis yang diawali dengan proses sintesis ethylene. Meningkatnya respirasi dipengaruhi oleh jumlah ethylene yang dihasilkan, meningkatnya sintesis protein dan RNA. Proses kl imakterik pada Apel diperkirakan karena adanya perubahan permeabilitas selnya yang menyebabkan enzym dan susbrat yang dalam keadaan normal terpisah, akan bergabung
dan bereaksi satu dengan lainnya.
Perubahan warna dapat terjadi baik oleh proses-proses perombakan maupun proses sintetik, atau keduanya. Pada jeruk manis perubahan warna ini disebabkan oleh karena perombakan khlorofil dan pembentukan zat warna karotenoid. Sedangkan pada pisang warna kuning terjadi karena hilangnya khlorofil tanpa adanya atau sedikitpembentukan zat karotenoid. Sisntesis likopen dan perombakan khlorofil merupakan ciri perubahan warna pada buah tomat.
Menjadi lunaknya buah disebabkan oleh perombakan propektin yang tidak larutmenjadi pektin yang larut, atau hidrolisis zat pati (seperti buah waluh) atau lemak (pada adpokat). Perubahan komponen-komponen buah ini diatur oleh enzym-enzym antara lain enzym hidroltik, poligalakturokinase, metal asetate, selullose.
Flavour adalah suatu yang halus dan rumit yang ditangkap indera yang merupakan kombinasi rasa (manis, asam, sepet), bau (zat-zat atsiri) dan terasanya pada lidah. Pematangan biasanya meningkatkan jumlah gula-gula sederhana yang memberi rasa manis, penurunan asam-asam organik dan senyawa-senyawa fenolik yang mengurangi rasa sepet dan masam, dan kenaikan zat-zat atsiri yang memberi flavour khas pada buah.
Proses pematangan juga diatur oleh hormon antara lain AUXIN, sithokinine, gibberellin, asam-asam absisat dan ethylene.Auxin berperanan dalam pembentukan ethylene, tetapi auxin juga menghambat pematangan buah. Sithokinine dapatmenghilangkan perombakan protein, gibberellins menghambat perombakan khlorofil dan menunda penimbunan karotenoidkarotenoid.
Asam absisat menginduksi enzym penyusun/pembentuk karotenoid, dan ethylene dapat mempercepat pematangan.

Peranan Ethylene
a.        Ethyleene sebagai hormon pematangan
Ethylene sebagi hormon akan mempercepat terjadinya klimakterik. Biale (1960) telah membuktikan bahwa pada buah adpokat yang disimpan di udara biasa akan matang setelah 11 hari, tetapi apabila disimpan dalam udara dengan kandungan ethylene 10 ppm selama 24 jam buah adpokat tersebut akan matang dalam waktu 6 hari. Aplikasi C2H2 (Ethylene) pada buah-buahan klimakterik, makin besar konsentrasi C2H2 sampai tingkat kritis makin cepat stimulasi respirasinya. Ethylene tersebut bekerja paling efektif pada waktu tahap klimakerik, sedangkan penggunaan C2H2 pada tahap post klimakerik tidak merubah laju respirasi.
Pada buah-buahan non klimakterik respon terhadap penambahan ethylene baik pada buah pra panen maupun pasca panen, karena produksi ethylene pada buah non klimakterik hanya sedikit.
Dari penelitian Burg dan Burg (1962), juga dapat diketahui bahwa ethylene merangsang pemasakan klimakerik. Sedangkan menurut Winarno (1979) dikatakan bahwa uah-buahan non klimakterik akan mengalami klimakterik setelah ditambahkan ethylene dalam jumlah yang besar. Sebagai contohbuah non kl imakterik untuk percobaannya adalah jeruk. Di samping itu pada buah-buahan non klimakterik apabila ditambahkan ethylene beberapa kali akan terjadi klimakterik yang berulang-ulang.
Penelitian Mattoo dan Modi (19 69) telah menunjukkan bahwa C2H2 meningkatkan kegiatan enzym-enzym katalase, peroksidase, dan amylase dalam irisan-irisan mangga sebelum puncak kemasakannya. Serta selama pema cuan juga diketemukan zat-zat serupa protein yang menghambat pemasakan, dalam irisan-irisan itu dapat hilang dalam waktu 45 jam. Perlakuan dengan C2H2 mengakibatkan irisan-irisan menjadi lunak dan tejadi perubahan warna yang menarik dari putih ke kuning, yang member petunjuk timbulnya gejala-gejala kematangan yang khas.

b.        Ethylene Pada Absisi Daun
Kehilangan daun pada setiap musim gugur merupakan suatu adaptasi untuk menjaga agar tumbuhan yang berganti daun, selama musim dingin tetap hidup ketika akar tidak bisa mengabsorpsi air dari tanah yang membeku.
Sebelum daun itu mengalami absisi, beberapa elemen essensial diselamatkan dari daun yang mati, dan disimpan di dalam sel parenkhim batang. Nutrisi ini dipakai lagi untuk pertumbuhan daun pada musim semi berikutnya.
Warna daun pada musim gugur, merupakan suatu kombinasi dari warna pigmen merah yang baru dibuat selama musim gugur, dan warna karotenoid yang berwarna kuning dan orange, yang sudah ada di dalam daun, tetapi kelihatannya berubah karena terurainya klorofil yang berwarna hijau tua pada musim gugur. Ketika daun pada musim gugur rontok, maka titik tempat terlepasnya daun merupakan suatu lapisan absisi yang berlokasi dekat dengan pangkal tangkai daun. Sel parenkhim berukuran kecil dari lapisan ini mempunyai dinding sel yang sangat tipis, dan tidak mengandung sel serat di sekelilingjaringan pembuluhnya. Lapisan absisi selanjutnya melemah, ketika enzimnya menghidrolisis polisakarida di dalam dinding sel. Akhirnya dengan
bantuan angin, terjadi suatu pemisahan di dalam lapisan absisi. Sebelum daun itu jatuh, selapisan gabus membentuk suatu berkas pelindung di samping lapisan absisi dalam ranting tersebut untuk mencegah patogen yang akan menyerbu bagian tumbuhan yang ditinggalkannya.
Suatu perubahan keseimbangan etilen dan auksin, mengontrol absisi. Daun yang tua, menghasilkan semakin sedikit auksin; yang menyebabkan sel lapisan absisi lebih sensitif terhadap etilen. Pada saat pengaruh etilen terhadap lapisan absisi kuat, maka sel itu memproduksi enzim, yang mencerna sellulose dan komponen dinding sel lainnya.

c.         Ethylenee dan Permeablitas Membran
Ethylene adalah senyawa yang larut di dalam lemak sedangkan memban dari sel terdiri dari senyawa lemak. Oleh karena itu ethylene dapat larut dan menembus ke dalam membran mitochondria. Apabila mitochondria pada fase pra klimakterik diekraksi kemdian ditambah ethylene, ternyata terjadi pengembangan volume yang akan meningkatkan permeablitas sel sehingga bahan-bahan dari luar mitochondria akan dapat masuk. Dengan perubahanperubahan permeabilitas sel akan memungkinkan interaksi yang lebih besar antara substrat buah dengan enzym-enzym pematangan.

d.        Ethylene dan Aktiitas ATP-ase
Ethylene mempunai peranan dalam merangsang aktiitas ATP-ase dalam penyediaan energi yang dibutuhkan dalam metabolisme. ATP-ase adalah suatu enzym yang diperlukan dalam pembuatan enegi dari ATP yang ada dalam buah. Adapun reaksinya adalah sebagai berikut:
ATP ----------------------- ADP + P -------------------------- Energi ATP-ase

e.         Ethylene sebagai “Genetic Derepression”
Pada reaksi biolgis ada dua faktor yang mengontrol jalannya reaksi. Yang pertama adalah “Gene repression” yang menghambat jalannya reaksi yang berantai untuk dapat berlangsung terus. Yang kedua adalah “Gene Derepression” yaitu faktor yang dapat menghilangkan hambatan tersebut sehingga reaksi dapat berlangsun.
Selain itu ethylene mempengaruhi proses-proses yang tejadi dalam tanaman termasuk dalam buah, melalui perubahan pada RNA dan hasilya adalah perubahan dalam sintesis protein yang diatur RNA sehingga pola-pola enzym-enzymnya mengalami perubahan pula.

2.5.1.      Interaksi Ethylene dengan Auxin
Di dalam tanaman ethylene mengadakan interaksi dengan hormone auxin. Apabila konsentrasi auxin meningkat maka produksi ethylen pun akan meningkat pula. Peranan auxin dalam pematangan buah hanya membantu merangsang pembentukan ethylene, tetapi apabila konsentrasinya ethylene cukup tinggi dapat mengakibatkan terhambatnya sintesis dan aktifitas auxin.

2.5.2.      Produksi dan Aktifitas Ethyllene
Pembentukan ethylene dalam jaringan-jaringan tanaman dapat dirangsang oleh adanya kerusakan-kerusakan mekanis dan infeksi. Oleh karena itu adanya kerusakan mekanis pada buah-buahan yang baik di pohon maupun setelah dipanen akan dapat mempercepat pematangannya.
Penggunaan sinar-sinar radioaktif dapat merangsang produksi ethylene. Pada buah Peach yang disinari dengan sinar gama 600 krad ternyata dapat mempercepat pembentukan ethylene apabila dibeika pada saat pra klimakterik, tetapi penggunaan sinar radioaktif tersebut pada saat
klimakterik dapat menghambat produksi ethylene.
Produksi ethylene juga dipengaruhi oleh faktor suhu dan oksigen. Suhu renahmaupun suhu tinggi dapat menekan produk si ethylene. Pada kadar oksigen di bawah sekitar 2 % tidak terbentuk ethylene, karena oksigen sangat diperlukan. Oleh karena itu suhu rendah dan oksigen renah dipergunakan dalam pr aktek penyimpanan buah-buahan, karena akan dapat memperpanjang daya simpan dari buah-buahan tersebut.
Aktifitas ethylene dalam pematangan buah akan menurun dengan turunnya suhu, misalnya pada Apel yang disimpan pada suhu 30 C, penggunaan ethylene dengan konsentrasi tinggi tidak memberikan pengaruh yang jelas baik pada proses pematangan maupun pernafasan. Pada suhu optimal untuk produksi dan aktifitas ethylene pada bah tomat dan apel adalah 320 C, untuk buah-buahan yang lain suhunya lebih rendah.


BAB IV
PENUTUP
Seperti yang telah dibahas dimuka, ZPT sintetik sangat banyak digunakan pada pertanian modern. Tanpa ZPT si ntetik untuk mengendalikan gulma, atau untuk mengendalikan pertumbuhan dan pengawetan buah-buahan, maka produksi bahan makanan akan berkurang sehingga harganya akan menjadi mahal.Disamping itu, muncul keprihatinan bahwa penggunaan senyawa sintetik secara berlebihan pada produksi pangan akan menimbulkan masalah lingkungan dan kesehatan serius. Sebagai contoh dioksin, senyawa kimia sampingan dari sintesa 2, 4-D yang digunakan sebagai herbisida selektif untuk membasmi gulma berdaun lebar dari tumbuhan dikotil.
Walaupun 2, 4-D tidak beracun terhadap mamalia, namun dioksin dapat menyebabkan cacat lahir, penyakit hati, dan leukimia pada hewan percobaan.Sekarang ini, bagaimanapun juga, produksi bahan pangan secara organik menjadi relatif lebih mahal. Persoalan penggunaan senyawa kimia sintetik pada bidang pertanian melibatkan aspek ekonomi dan etika. Haruskah kita teruskan memproduksi pangan yang murah dan berlimpah dengan zat kimia sintetik dan masa bodoh terhadap masalah yang mungkin muncul, atau haruskah kita melakukan budidaya tanaman tanpa zat kimia sintetik berbahaya tetapi dengan menerima kenyataan bahwa harga bahan pangan akan lebih mahal.


DAFTAR PUSTAKA

Anna Kasvaa. 2010. The growth enhancing effects of triacontanol.htttp://www.carbonkick.fi. Diakses tanggal 3 januari 2015.
Campbell, N. A. and J. B. Reece. 2002. Biology. Sixth Edition, Pearson Education. Inc. San Francisco.802-831.
George, L.W. 2005. Teknik Kultur In Vitro dalam Holtikultura. Penebar Swadaya. Jakarta
Gunawan, L.W. 2010. Budidaya Anggrek. Penebar Swadaya. Jakarta Peranan Zat Pengatur Tumbuh (ZPT) Dalam Pertumbuhan dan Perkembangan Tumbuhan. http://www.iel.ipb.ac.id. Diakses tanggal 3 januari 2015.
Yusnida Bey, Wan Syafii, dan Sutrisna. 2006. Pengaruh Pemberian Giberelin (GA3) dan Air Kelapa terhadap Perkecanbahan Bahan Biji Anggrek Bulan (Phalaenopsis amabillis BL) Secara In Vitro. Jurnal Biogenesis Vol. 2(2): 41-46, 2006. Program Studi Pendidikan Biologi FKIPUniversitas Riau.
http://biologi-fkip.unri.ac.id/karya_tulis bey PENGARUH PEMBERIAN GIBERELIN 41-46.pdf.Diakses 3 januari 2015.

Tidak ada komentar:

Posting Komentar